Miremby en ligne
Détail de l'auteur
Auteur K. Ghorayeb |
Documents disponibles écrits par cet auteur (1)
Affiner la recherche Interroger des sources externes
Stability of double-diffusive convection in a rectangular cavity with constant heat and mass fluxes along the vertical side-walls / K. Ghorayeb
Titre : Stability of double-diffusive convection in a rectangular cavity with constant heat and mass fluxes along the vertical side-walls Type de document : texte imprimé Auteurs : K. Ghorayeb, Auteur ; A. Mojtabi, Auteur Importance : p 67-74 Langues : Anglais (eng) Catégories : MATHEMATIQUE-PHYSIQUE-CHIMIE Résumé : This paper is devoted to the onset of double-diffusive in a vertical rectangular cavity. The horizontal side-walls are impermeable and adiabatic while the vertical ones are subjected to constant heat and mass fluxes. In this study, we assume that the ratio N of solutal to thermal Grashof numbers is equal to -1. We perform , by the means of the Galerkin method, the linear stability analysis of the purely diffusive solution. The onset of convection is also numerically studied using a spectral method. It is found that, in a square bounded cavity, the purely diffusive solution becomes unstable for Rat/Le-1/=19726 for constant fluxes boundary conditions (Newman boundary conditions) while it is shown to be Rat/Le-1/=17174 for Dirichlet vertical boundary conditions. Direct numerical simulations confirm the over-mentioned results and point out the existence of a subscribal regime for a Rayleigh number which is six times smaller than the critical Rayleigh number Numéro du document : A 7482/PHY Niveau Bibliographique : 2 Bull1 (Theme principale) : PHYSIQUE Bull2 (Theme secondaire) : THERMIQUE Stability of double-diffusive convection in a rectangular cavity with constant heat and mass fluxes along the vertical side-walls [texte imprimé] / K. Ghorayeb, Auteur ; A. Mojtabi, Auteur . - [s.d.] . - p 67-74.
Langues : Anglais (eng)
Catégories : MATHEMATIQUE-PHYSIQUE-CHIMIE Résumé : This paper is devoted to the onset of double-diffusive in a vertical rectangular cavity. The horizontal side-walls are impermeable and adiabatic while the vertical ones are subjected to constant heat and mass fluxes. In this study, we assume that the ratio N of solutal to thermal Grashof numbers is equal to -1. We perform , by the means of the Galerkin method, the linear stability analysis of the purely diffusive solution. The onset of convection is also numerically studied using a spectral method. It is found that, in a square bounded cavity, the purely diffusive solution becomes unstable for Rat/Le-1/=19726 for constant fluxes boundary conditions (Newman boundary conditions) while it is shown to be Rat/Le-1/=17174 for Dirichlet vertical boundary conditions. Direct numerical simulations confirm the over-mentioned results and point out the existence of a subscribal regime for a Rayleigh number which is six times smaller than the critical Rayleigh number Numéro du document : A 7482/PHY Niveau Bibliographique : 2 Bull1 (Theme principale) : PHYSIQUE Bull2 (Theme secondaire) : THERMIQUE Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire