Miremby en ligne
Détail de l'auteur
Auteur J.M. Corberan |
Documents disponibles écrits par cet auteur (1)
Affiner la recherche Interroger des sources externes
Alternative treatment of strong source terms in non-linear hyperbolic conservation laws. Application to unsteady 1-D compressible flow in pipes with variable cross section / J.M. Corberan
Titre : Alternative treatment of strong source terms in non-linear hyperbolic conservation laws. Application to unsteady 1-D compressible flow in pipes with variable cross section Type de document : texte imprimé Auteurs : J.M. Corberan, Auteur ; L.L. Gascon, Auteur Année de publication : 1998 Importance : p 275-282 Langues : Anglais (eng) Catégories : MATHEMATIQUE-PHYSIQUE-CHIMIE Mots-clés : METHODE LAX&WENDROFF TRANSFERT DE CHALEUR EQUATION D'EULER Résumé : In this paper, a second order explicit finite difference scheme has been defined to solve a class of non-homogenous conservation laws, which includes the one-dimensional Euler equations with source terms arising from variation of area along a narrow duct. The basic idea has been the transformation of the system of conservation laws with source terms in a homogenous system. The proposed scheme recognizes stationary solutions of the non-homogenous system. Numerical results are presented to demonstrate the performance of the described scheme. Numéro du document : A 7482/PHY Niveau Bibliographique : 2 Bull1 (Theme principale) : PHYSIQUE Bull2 (Theme secondaire) : THERMIQUE Alternative treatment of strong source terms in non-linear hyperbolic conservation laws. Application to unsteady 1-D compressible flow in pipes with variable cross section [texte imprimé] / J.M. Corberan, Auteur ; L.L. Gascon, Auteur . - 1998 . - p 275-282.
Langues : Anglais (eng)
Catégories : MATHEMATIQUE-PHYSIQUE-CHIMIE Mots-clés : METHODE LAX&WENDROFF TRANSFERT DE CHALEUR EQUATION D'EULER Résumé : In this paper, a second order explicit finite difference scheme has been defined to solve a class of non-homogenous conservation laws, which includes the one-dimensional Euler equations with source terms arising from variation of area along a narrow duct. The basic idea has been the transformation of the system of conservation laws with source terms in a homogenous system. The proposed scheme recognizes stationary solutions of the non-homogenous system. Numerical results are presented to demonstrate the performance of the described scheme. Numéro du document : A 7482/PHY Niveau Bibliographique : 2 Bull1 (Theme principale) : PHYSIQUE Bull2 (Theme secondaire) : THERMIQUE Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire