| Titre : |
Alternative treatment of strong source terms in non-linear hyperbolic conservation laws. Application to unsteady 1-D compressible flow in pipes with variable cross section |
| Type de document : |
texte imprimé |
| Auteurs : |
J.M. Corberan, Auteur ; L.L. Gascon, Auteur |
| Année de publication : |
1998 |
| Importance : |
p 275-282 |
| Langues : |
Anglais (eng) |
| Catégories : |
MATHEMATIQUE-PHYSIQUE-CHIMIE
|
| Mots-clés : |
METHODE LAX&WENDROFF TRANSFERT DE CHALEUR EQUATION D'EULER |
| Résumé : |
In this paper, a second order explicit finite difference scheme has been defined to solve a class of non-homogenous conservation laws, which includes the one-dimensional Euler equations with source terms arising from variation of area along a narrow duct. The basic idea has been the transformation of the system of conservation laws with source terms in a homogenous system. The proposed scheme recognizes stationary solutions of the non-homogenous system. Numerical results are presented to demonstrate the performance of the described scheme. |
| Numéro du document : |
A 7482/PHY |
| Niveau Bibliographique : |
2 |
| Bull1 (Theme principale) : |
PHYSIQUE |
| Bull2 (Theme secondaire) : |
THERMIQUE |
Alternative treatment of strong source terms in non-linear hyperbolic conservation laws. Application to unsteady 1-D compressible flow in pipes with variable cross section [texte imprimé] / J.M. Corberan, Auteur ; L.L. Gascon, Auteur . - 1998 . - p 275-282. Langues : Anglais ( eng)
| Catégories : |
MATHEMATIQUE-PHYSIQUE-CHIMIE
|
| Mots-clés : |
METHODE LAX&WENDROFF TRANSFERT DE CHALEUR EQUATION D'EULER |
| Résumé : |
In this paper, a second order explicit finite difference scheme has been defined to solve a class of non-homogenous conservation laws, which includes the one-dimensional Euler equations with source terms arising from variation of area along a narrow duct. The basic idea has been the transformation of the system of conservation laws with source terms in a homogenous system. The proposed scheme recognizes stationary solutions of the non-homogenous system. Numerical results are presented to demonstrate the performance of the described scheme. |
| Numéro du document : |
A 7482/PHY |
| Niveau Bibliographique : |
2 |
| Bull1 (Theme principale) : |
PHYSIQUE |
| Bull2 (Theme secondaire) : |
THERMIQUE |
|